If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-4.9=0
a = 2; b = 1; c = -4.9;
Δ = b2-4ac
Δ = 12-4·2·(-4.9)
Δ = 40.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{40.2}}{2*2}=\frac{-1-\sqrt{40.2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{40.2}}{2*2}=\frac{-1+\sqrt{40.2}}{4} $
| 1.2q-6.4q+1.3=-24.7 | | 3-b+3b=1 | | 30+(7+x)+10=40 | | 2p+17p=38 | | 42^(z-3)=7 | | 5x+1=3x–3 | | 51-17+37=p | | 2x(3x-4)-14=0 | | b/b-5+8=5/b-5 | | -.05x^2+35=20 | | 81/9•24=y | | 81/9•24=x | | 1/3y+2=2/15y | | 49x=176 | | 4x+12=3(X-1) | | 4x=12=3(x-1) | | 42^z-3=7 | | 28x^2=6-38x | | 6(2+x)+5x=88 | | 5x^2+5=-47 | | 28x^2+38x-6=0 | | 5^7x=125 | | 6x+2x=176 | | 2z-1=3z+3 | | -x^2+20x-84=0 | | 3x-5+4x-6-5x+7-6x+8+7x-9+8x-10=9x-11 | | x^2+10+28=0 | | X^2=20x-84 | | 1/7b=11/7 | | 2×6^t=3^2t | | 3x-14+2(x-9=2x-2 | | 2×6t=3^2t |